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Finite element methods, experimental statistical energy analysis (ESEA) andMonte Carlo
methods have been used to determine coupling loss factors for use in statistical energy
analysis (SEA). The aim was to use the concept of an ESEA ensemble to facilitate the use of
SEA with plate subsystems that have low modal density and low modal overlap. An
advantage of the ESEA ensemble approach was that when the matrix inversion failed for
a single deterministic analysis, the majority of ensemble members did not encounter
problems. Failure of the matrix inversion for a single deterministic analysis may incorrectly
lead to the conclusion that SEA is not appropriate. However, when the majority of the
ESEA ensemble members have positive coupling loss factors, this provides su$cient
motivation to attempt an SEA model. The ensembles were created using the normal
distribution to introduce variation into the plate dimensions. For plate systems with low
modal density and low modal overlap, it was found that the resulting probability
distribution function for the linear coupling loss factor could be considered as lognormal.
This allowed statistical con"dence limits to be determined for the coupling loss factor. The
SEA permutation method was then used to calculate the expected range of the response
using these con"dence limits in the SEA matrix solution. For plate systems with low modal
density and low modal overlap, relatively small variation/uncertainty in the physical
properties caused large di!erences in the coupling parameters. For this reason, a single
deterministic analysis is of minimal use. Therefore, the ability to determine both the
ensemble average and the expected range with SEA is crucial in allowing a robust
assessment of vibration transmission between plate systems with low modal density and low
modal overlap.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Prediction of structure-borne sound transmission is of importance in many "elds of noise
control including building, ship, automobile and aerospace engineering. Although each "eld
has its own particular sound transmission problems, engineers generally use two main
techniques for the analysis of vibration transmission in built-up structures, statistical energy
analysis (SEA) [1] and "nite element methods (FEM) [2]. These approaches are described
as statistical and deterministic methods respectively.
A problem common to many areas of structural dynamics but of particular relevance to

building acoustics is the prediction of structure-borne sound transmission between plates
with low modal density and low modal overlap. In building acoustics, there is a clearly
de"ned frequency range of interest, 50 Hz}5 kHz, from which third octave band data are
used to calculate single-number quantities [3] for regulatory purposes. In this range,
022-460X/02/120193#22 $35.00/0 � 2002 Elsevier Science Ltd.
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concrete/masonrywalls or #oors have mode counts in third octave bands ranging from zero
up to a few hundred.
For some structures, it is possible to carry out all relevant analysis using either

a deterministic or a statistical approach. More commonly, information is required across
a frequency range that encompasses both low- and high-frequency ranges. When both
approaches are required, the question arises as to which model to use in the mid-frequency
range. One possibility is to maintain a clear distinction between the two approaches and
improve the process of transferring the geometry, dimensions and material properties of the
structure between the di!erent models as well as facilitating the merge of the output data.
Another possibility has been proposed by Langley and Bremner [4] that uses fuzzy
structure theory and incorporates features of both statistical and deterministic approaches.
However, for the low- and mid-frequency ranges, uncertainty in the material properties and
dimensions means that a single deterministic analysis (using local or global modes) will
rarely predict the large #uctuations in the same frequency bands as in the measured
response. It is for this reason that response statistics are desirable for the low- and
mid-frequency ranges. The approach investigated in this paper is to use the SEA framework
with coupling parameters and statistical con"dence limits determined from FEM data. The
aim is to allow statistical information from a number of deterministic analyses to be used in
the SEA framework, and hence calculate the expected range of response for coupled plates
with low modal density and low modal overlap.
In classical SEA, wave theory is often used to estimate the coupling losses between

structural systems consisting of simple beams and plates. Assuming that the junctions have
been correctly modelled, it is useful to know the requirements on the subsystems such that
these estimates will apply to the ensemble with a low variance. Computational [5, 6] and
physical [7] experiments on beams and plates have indicated that the coupling loss factor
(CLF) will approximate that predicted from wave theory transmission coe$cients when the
larger of the modal overlap factors (M) for two coupled elements is greater than or equal to
unity. For plates, Fahy and Mohammed [5] apply an extra condition that there should be
a mode count (N) of at least "ve modes in the frequency band. In general, the condition
N*5 forms a useful quantitative de"nition of the term &&multi-modal''. Mace and
Rosenberg [8] have since shown that for coupled rectangular plates, the coupling strength
depends on a coupling parameter, �

�
, rather than the modal overlap factor. However,

although it is not exact, the modal overlap factor remains a practical indicator of coupling
strength because of its ease of calculation. Hence, the conditionsM*1 and N*5 can be
used to estimate as to when SEA wave theory is &&appropriate'' for plate systems. When these
conditions are not met, SEA can still be used but it must be accepted that errors of unknown
magnitude can occur. It is for this reason that deterministic analysis such as FEM has been
investigated in the literature [e.g., references 8}13] to determine SEA coupling parameters
between coupled plates. The underlying aim has generally been to elucidate and potentially
avoid the limitations of classical SEA. The majority of previous work on FEM used a single
deterministic analysis to calculate coupling parameters rather than providing the basis for
a statistical approach as used in this paper.

2. ANALYSIS USING FEM, ESEA, THE ESEA ENSEMBLE AND SEA

This section describes the approach taken to determine vibration transmission between
plates with low modal density and low modal overlap. This approach uses FEM, ESEA and
Monte Carlo methods to calculate CLFs for use in predictive SEA. These CLFs and their
associated statistics are then used to determine minimum and maximum subsystem energy
ratios in a process that will be referred to as the &&SEA permutation method''.
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2.1. SEA PERMUTATION METHOD

SEA assumes a statistical description of the subsystems such that the subsystem response
represents the ensemble average of &&similar'' subsystems with physical parameters drawn
from statistical distributions. This ensemble is referred to as the SEA ensemble. Plate
subsystems can be described in SEA using mass, sti!ness, internal damping, thickness, area
and the coupling line lengths. Information on the exact plate geometry and dimensions can
be renounced because of the uncertainty in describing the modal features of multi-modal
subsystems at high frequencies.
With ESEA, there is the potential to create a di!erent kind of ensemble, which will be

termed an ESEA ensemble. Like the SEA ensemble, the ESEA ensemble considers systems
that consist of subsystems with &&similar'' properties. However, unlike the SEA ensemble, it
can include subsystems where the SEA assumption of equipartition of modal energy in
a frequency band (i.e., incident energy uniformly distributed in angle) does not apply, but
ESEA &&weak'' coupling still exists (from Smith's [14] de"nition of &&weak'' coupling which
ensures a well-conditioned matrix for ESEA matrix inversions).
The SEA ensemble considers uncertainty in the description of the modal features. In

contrast, the ESEA ensemble is intended for subsystems where there is limited knowledge
about the modal features, but uncertainty as to how the eigenfrequencies will be distributed
amongst the frequency bands of interest. The ESEA ensemble can therefore be used for
&&similar'' sets of structures that have high tolerances on the dimensions and material
properties. For these structures, a single deterministic analysis is likely to be of limited use.
The following example is used to illustrate a potential application of the ESEA ensemble

to buildings. Similar examples could be found for ship, automobile and aerospace
engineering. This example concerns the prediction of vibration transmission in third octave
bands between adjacent dwellings for a set of &&similar'' dwellings. The required output of the
study is the vibration of the walls and #oors in terms of the mean response as well as the
expected range of the response. It is the latter output that is expected to be of particular
interest. The subsystem modal density is low because the walls and #oors are composed of
thick masonry/concrete plates. Also, mode-wave duality indicates that the range of
equivalent angles for the low-frequency modes is restricted by the rectangular subsystem
geometry [15]. For these reasons, equipartition of modal energy in a frequency band does
not occur in these plate subsystems. However, for the set of &&similar'' dwellings there will be
variations due to workmanship, material properties and plate dimensions such that any
certainty regarding the equivalent angles is counteracted by the uncertainty in the
prediction of the eigenfrequencies and eigenfunctions at low frequencies. The requirement
for third octave bands exacerbates the low-frequency problem because &&similar'' plates in
a set of &&similar'' dwellings can have zero, one, or more than one eigenfrequency in the same
third octave band.
One approach to this study would be to use predictive SEA with CLF values determined

from angular average wave theory. However, large errors can occur due to incorrect CLF
values because of low modal density and low modal overlap [5]. Also, the output would
only be the mean response. This is due to the lack of formal procedures in SEA to determine
the expected range of the response for these subsystems. Typical variations in material
properties and plate dimensions in the set of &&similar'' dwellings are likely to have negligible
e!ect on the plate energy or the wave theory CLF values in the SEA model because of
the relatively large plate sizes. For this reason and the strong modal dependence that can
be expected in the CLF, the repeated use of SEA wave theory models with variations to the
material properties and plate dimensions of the subsystems will not create a realistic range
for the response.
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The approach considered in this paper is to use FEM and ESEA to determine CLF
values for isolated L- and T-junctions of rectangular plates that can be used in larger SEA
models comprising these junctions. It is intended to use this approach at frequencies above
the fundamental global eigenfrequency of the isolated junction.
The ESEA ensemble represents coupled plate junctions in the set of &&similar'' dwellings

by taking account of the variation in material properties and dimensions. To use this
approach, SEA must be appropriate for the system under study. This can be indicated
during the ESEA analysis by the ability to determine positive coupling and internal loss
factors, and by well-conditioned energy matrices. The advantage of ESEA with numerical
experiments is that both the mean and variance of the ensemble average CLF are found
without including the e!ect of sampling errors in the plate energy that can be signi"cant
with physical experiments. Therefore, the mean response for the ESEA ensemble can be
obtained and there is an opportunity to calculate the expected range of the response. The
latter can be found by ascribing statistical con"dence limits to the CLF values such that
each CLF can take two values corresponding to the lower and upper limits. These can be
used in a series of SEA models including all possible permutations of the con"dence limits
for all the CLF values. The number of permutations for the SEA model is equal to 2�, where
n is the number of CLF values that have lower and upper con"dence limits. Although the
number of permutations soon increases with many coupled subsystems, matrix solutions
are su$ciently fast such that this approach will be feasible for small numbers of subsystems.
It may also be useful with SEA models where the majority of CLF values are single values
determined from wave theory and only a small number of CLF values have con"dence
limits. The "nal step is to "nd the expected range of the response from the minimum and
maximum subsystem energy ratios. This approach to determine minimum and maximum
subsystem energy ratios will be referred to as the &&SEA permutation method''. For
engineering purposes, the energy ratios are converted and displayed using D

����
, the

vibration level di!erence in decibels between source subsystem i and receiver subsystem j.

2.2. FEM ANALYSIS

FEM analyses were carried out using ANSYS 5.5 software with the SHELL63 element.
Element dimensions were (�

�
/6 where the bending wavelength, �

�
, corresponded to the

plate with the smallest �
�
value.

Rain-on-the-roof excitation was applied over all the unconstrained nodes on one surface
of the source plate with forces of unity magnitude and random phase. With numerical
realization of rain-on-the-roof, it is possible to have di!erent sets of random phase values
for the unity magnitude input forces, i.e., di!erent &&rainfall''. Therefore, di!erent sets of
random phase values were used for each member of the ensemble such that the ensemble
output can be considered as representative of di!erent physical realizations of
rain-on-the-roof.
In the FEM model, the loss factor is introduced in terms of the constant damping ratio,

and is purely an internal loss in the FEM calculations. However, to simulate the total loss
factor (TLF) that occurs with fully connected walls in complete buildings, the loss factor
needs to represent the sum of the coupling loss factors (for a plate that is fully connected in
a building) plus the internal loss factor [10]. It should be noted that this scenario is quite
di!erent from that of thin metal or perspex plates that are commonly dealt with in the
literature [e.g., references 9, 12, 13], where the TLF is dominated by internal damping. The

loss factor used in the FEM model for all test constructions was 1/�f and was based upon
the typical value for the sum of the coupling loss factors for concrete/masonry walls in
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a typical dwelling as described by Craik [16]. To avoid a signi"cant decrease in vibration
with distance across each subsystem, the loss factor did not include
a frequency-independent internal loss factor [15].

2.3. EXPERIMENTAL SEA

The aim of ESEA is to use the SEA power-balance equations to determine the loss factors
through inversion of the energy matrix. Lyon [17] proposed the technique and highlighted
the main problems. Problems can occur because of errors in the measured energies that can
give negative CLF values due to ill-conditionedmatrices. Woodhouse [18] emphasized two
important points regarding ESEA. Firstly, ESEA veri"es that SEA is suitable to analyze
a system before using SEA to assess the e!ect of any changes. Secondly, the development of
ESEA is crucial in allowing experimental determination of coupling losses across complex
junctions for which theoretical solutions are often inaccurate or simply do not exist.
The system under analysis is considered as a set of ESEA subsystems. The general ESEA

matrix is determined from the general SEA matrix and is shown in equation (1) where E
��
is

the energy of subsystem i with power input into subsystem j, �
��
is the CLF from subsystem

i to subsystem j, �
��
is the internal loss factor (ILF) of subsystem i, and �

����
is the power

input to subsystem i.
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Experimental determination of the subsystem energies and power inputs allows inversion of
the energy matrix to determine the loss factor matrix. The subsystem energies are
determined from numerical experiments using FEM. These experiments require the energies
to be measured in all subsystems for sequential power injection into each subsystem. If
a system has been partitioned into suitable subsystems, errors in the energy are negligible
and there is ESEA &&weak'' coupling, the energy matrix should be well-conditioned. This is
due to subsystem energy terms on the diagonal that are signi"cantly larger than the
o!-diagonal terms. However, any numerical experiment can have errors in the measured
energy values and therefore the matrix is prone to being ill-conditioned and to output
negative ILF and/or CLF values.
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Work on ESEA initially concentrated on the collection of accurate measurement data
from physical experiments on systems that ful"lled the requirements of SEA. Bies and
Hamid [19] successfully used ESEA to determine TLF and CLF values on a physical
system composed of two coupled plates. Excitation was applied sequentially at a number of
di!erent points to resolve the issue [20] that single excitation points do not give rise to
statistically independent modes. Physical experiments are generally carried out using single
excitation points, which, for multi-modal subsystems with high damping (e.g., thin
metal plates with damping layers) is not a signi"cant problem as only a few single
excitation points may be required to simulate statistically independent excitation forces.
However, for subsystems that are not multi-modal (i.e., concrete/masonry plates), this
highlights an advantage of numerical or analytical experiments in which rain-on-the roof
excitation can be used to satisfy the requirement for statistically independent excitation
forces.
Later work concentrated on improving matrix solutions to avoid the problems of

negative CLF values. Woodhouse [18] demonstrated the sensitivity of matrix inversion to
small errors and proposed the use of an iterative procedure to determine a symmetric
matrix that satis"ed the form of the SEA CLF matrix. Clarkson and Ranky [7] successfully
used the same approach. It is important to note that the failure of the matrix inversion to
produce positive CLF values does not prove that the system cannot or should not be
modelled using SEA. Assuming that it is only the errors in the experimentally determined
energies that cause the negative CLF values, the system may actually exhibit SEA
behaviour. Therefore, the role of iterative matrix-"tting procedures can be seen as one of
&&forcing'' SEA upon a system that may or may not have SEA behaviour. Hodges et al. [21]
concentrated on the optimization of matrix-"tting routines in order to increase the chances
of determining a loss factor matrix that could form the basis of an SEA model for the
system.
Lalor [22] noted potential problems with any optimization approach in that the ability

to signi"cantly alter a CLF also implied that these optimized values might not be reliable.
An alternative matrix solution was proposed by Lalor to overcome the problem of
ill-conditioned ESEA matrices. Lalor's proposal was to split the calculation of CLF and
ILF values into separate matrices as shown in equation (2). For the calculation of the CLF
values with N*3, this uses the smaller (N!1)�(N!1) energy matrix rather than the
N�N energy matrix of the general ESEA matrix formulation.
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Another possibility is to use the fundamental SEA equations for two- or three-coupled
subsystems to create speci"c ESEA matrices for the L- and T-junctions analyzed in this
paper. The speci"c matrices for two-and three-coupled subsystems are shown in equations
(3) and (4) respectively. These speci"c ESEA matrices are likely to be ill-conditioned and
re-arranging the rows will not improve the matrix condition number. However, they are
included for comparison with the general ESEA matrix and the alternative matrix
formulation.
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It was anticipated that for plates with low modal density and low modal overlap, problems
with the ESEA matrix inversion could be a barrier to the use of FEM ESEA and hence
the SEA permutation method. For this reason, all three matrix formulations were
investigated.



Figure 1. Plan view of FEM test constructions with subsystem numbers. L-junction (left), T-junction (middle),
Seven-plate system (right).

TABLE 1

FEM test construction data

L-junction T-junction

Subsystem number 1 2 1 2 3

Density (kg/m�) 1400 600 2000 600 600
c
	
(m/s�) 2200 1900 3200 1900 1900

The Poisson ratio 0)2 0)2 0)2 0)2 0)2
Thickness (m) 0)1 0)1 0)215 0)1 0)1
x (m) 4)0 3)5 4)0 3)5 3)0
y (m)� 2)4 2)4 2)4 2)4 2)4

�y-dimension corresponds to the junction line.
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3. NUMERICAL EXPERIMENTS

3.1. FEM TEST CONSTRUCTIONS

Three constructions were used in the numerical experiments: L-junction, T-junction, and
a seven-plate system formed from two T-junctions and four L-junctions. The subsystem
numbering for the constructions is shown in Figure 1. The seven-plate system can be seen as
representing masonry walls that form two adjacent rooms. It was formed from two
T-junctions (walls 1, 2, 3, 5 and 6), two L-junctions (walls 2, 4 and 5) and two di!erent
L-junctions (walls 3, 6 and 7) where wall 7 is identical to wall 1.
The test construction data for the L- and T-junctions are shown in Table 1.
All constructions had simply supported plate boundaries and a simply supported

junction line such that only bending waves were considered in the FEM model.
For each system the ESEA ensemble contained 30 members. The ensemble was created

through the use of random numbers drawn from a normal distribution,N(�, �), to vary the
plate length that was perpendicular to the junction for all plates. N(�, �) used the
x-dimension in Table 1 as the mean value, �, with a standard deviation, �"0)25 m. This
gave a realistic x-dimension range for a set of &&similar'' dwellings.
For the L- and T-junctions, analysis was carried out for third octave bands, 50 Hz}1 kHz.

However, to reduce computation time with the seven-plate system, analysis was only
carried out for third octave bands in the range 50}200 Hz. The number of single frequencies
used to determine third octave band data depended upon the modal overlap factor. To
ensure that bands with low modal overlap were adequately represented, a large number of
frequencies were used forM(1. For the L-junction withM(1, 1 Hz steps were used in
each band. For the T-junction withM(0)5, 2 Hz steps were used in each band, ForM*1
(¸-junction) andM*0)5 (T-junction), three frequencies were used in each band where one



Figure 2. L-junction (left) and T-junction (right). Modal overlap factor (lower curves) and mode count( upper
curves) for the ensemble of plate 1 (**, (a) and (b)) and plate 2 (....., (a)) and plates 2 and 3 (....., (b)).
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frequency was the band centre frequency, with the other two frequencies equally spaced
over the third octave bandwidth.
The modal overlap factor and local mode count (bending modes only) for the L- and

T-junctions are shown in Figure 2. All ensemble members are shown, although it is not
always possible to identify 30 curves because of identical values with some ensemble
members. These "gures show typical mode count and modal overlap data for
concrete/masonry walls over the majority of the building acoustics frequency range,
50 Hz}3)15 kHz. However, to reduce computation time the FEM analysis for the L- and
T-junctions only considered 50 Hz}1 kHz.
In order to make statements about the ensemble for each individual plate, it is convenient

to refer toM as the arithmetic mean of the ensemble's modal overlap factors and N as the
arithmetic mean of the ensemble's local mode counts. Hence, for the L-junction, the
conditionsM*1 and N*5 are satis"ed in third octave bands *315 Hz for plate 1 and
*400 Hz for plate 2. For the T-junction, the conditionsM*1 and N*5 are satis"ed in
third octave bands *2)5 kHz for plate 1, and *400 Hz for plates 2 and 3. It is worth
noting that typical solid separating walls (i.e., T-junction, plate 1) have M(1 and N(5
over the majority of the building acoustics frequency range that predominantly determines
the single-number quantity [3] used to rate airborne sound insulation. This indicates the
potential restriction on the successful application of SEA wave theory to concrete/masonry
structures. However, typical #anking walls (i.e., T-junction, plates 2 and 3 and L-junction,
plate 2) and separating cavity wall leaves (i.e., L-junction, plate 1) can have M(1 and
N(5 over a smaller frequency range.

3.2. ESEA MATRIX CONDITION

This section contains an assessment of ESEA errors and matrix condition numbers
through comparison of the three ESEA matrix formulations:

(A) general ESEA matrix formulation,
(B) alternative ESEA matrix formulation (after Lalor [22]),
(C) speci"c two or three subsystem ESEA matrix formulations.

Formulations A and C were used for the L-junction and formulations A, B and C were used
for the T-junction. (For N subsystems, formulation B has an (N!1)�(N!1) energy
matrix and can only be used for three or more subsystems.)
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The "rst step is to note how many negative ILF values occurred in the ESEA
process, because these have no physical meaning. In fact, no negative ILF values occurred
for any members of the L- and T-junctions ensembles. To date [15], models of two
L-junctions and two T-junctions have led to only one negative ILF, which was for one
member of an ensemble, for one plate at one frequency, using one matrix formulation, A.
This suggests that negative ILF values are unlikely to be common with these types of plate
systems, which is bene"cial to the ESEA ensemble approach because rejection of any
ensemble members due to this problem is likely to be a rare occurrence. Therefore, any
future consideration of matrix-"tting procedures [21] may only be required for a few
members of the ensemble.
The ESEA energy matrices are square matrices and are denoted as E. A unique solution

for the inverse of E, E�� exists when E is non-singular. However, because of experimental
errors in the energies and non-SEA behaviour of the system, E�� can di!er signi"cantly
with only small changes to the energy values. As an indicator of this problem, the condition
number [23] of matrix E, � (E), can be used to measure the sensitivity of E�� to small
changes in the matrix entries of E. For ideal square matrices, the condition number is unity
and the matrix problem is termed &&well-conditioned''. When the condition number is much
larger than unity, the matrix problem is termed &&ill-conditioned''. Golub and Van Loan
[23] demonstrate that the size of the determinant cannot be used as a measure of
ill-conditioning because it is possible to have a well-conditioned matrix with a small
determinant. It should be emphasized that di!erent norms can be used to determine the
condition number, and therefore the terms describing the matrix condition are dependent
upon the norm used in the calculation. In this paper, only the Euclidean norm is used (also
called the ¸

�
-norm) to allow a comparison of the condition number for the three di!erent

matrix formulations.
The next step is to make the link between the condition number and the potential errors

from the matrix inversion. Although it is possible to make this link with knowledge of the
errors in the energy and input power matrices, upper error bounds [23] can give high
overestimates that may not be particularly useful. In dealing with computational
electromagnetics, Hafner [24] has noted that the condition number is not a robust guide to
"nding accurate solutions. At present, it seems to be appropriate simply to label to rank
order the matrices as &&well-conditioned'' or &&ill-conditioned'' rather than trying to make
links from the condition number to the errors in the loss factor matrix that may not be
robust.
The minimum and maximum condition numbers in the ensemble are shown in Figure 3

for the L-junction with matrix formulations A and C, and the T-junction with matrix
formulations A, B and C.
For the T-junction with matrix formulation B, condition numbers are determined for

three energy matrices, each matrix being used to determine the CLF values to a subsystem.
B(1) is used to determine �

��
and �

��
, B(2) to determine �

��
, �

��
, and B(3) to determine

�
��
and �

��
. Figure 3 shows the minimum and maximum values of B(1) and B(2 and 3). The

latter set is formed by combining B(2) and B(3) and is justi"able because plates 2 and 3 are
similar.
For the L-junction, matrix formulation A gave lower condition numbers than C. Also,

there were no negative CLF values produced by any of the matrix formulations
and the condition numbers remained relatively low whenM(1 and N(5. This provides
evidence to support the hypothesis of Woodhouse [18] that SEA should always be
applicable to two subsystems when only one subsystem is excited. Therefore, it may be
possible to extend this hypothesis to plate systems that have low modal density and low
modal overlap.



Figure 3. L-junction (left) and T-junction (right). Minimum and maximum condition numbers of the ESEA
ensemble for matrix formulations A (....., (a) and (b)); B(1) (**, (b)); B (2 and 3) (00 , (b)); C(} } } , (a) and (b)).
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For the T-junction, the condition numbers are, in general, signi"cantly higher than for
the L-junction. Formulation B(1) had condition numbers similar to those for the
L-junction, whereas all other condition numbers were generally higher. It is seen that
formulation B(1) can be advantageous in obtaining lower condition numbers than
formulation A or C. However, the condition numbers indicate that when formulation B is
used to determine CLF values that are signi"cantly di!erent in magnitude, the condition
numbers can be relatively high and similar to A and C. This occurred for B(2) where
�
��

��
��
, and B(3) when �

��
��

��
.

For transmission around the corner of the T-junctions, no negative CLF values were
produced by any of the matrix formulations. However, there were negative CLF values for
transmission across the straight section of the T-junctions with up to eight of the 30
ensemble members, in 11 of the 14 third octave bands between 50 Hz and 1 kHz. It was
noted that regardless of the matrix formulation, the negative CLF values occurred for the
same ensemble members at the same frequencies.
Although no simple link exists between the condition number and the potential errors

from the matrix inversion, the ESEAmatrix formulation with the lowest condition numbers
can be considered as the most robust formulation for which an SEA model is appropriate.
General matrix formulation A, typically gives the lowest condition numbers and is therefore
considered as the most robust formulation. In contrast, speci"c matrix formulation C gives
the highest condition numbers and for this reason is not recommended for ESEA. For most
purposes, general formulation A gives adequately low condition numbers. However,
alternative formulation B can be used to give even lower condition numbers when the CLF
values are both high. For this reason, alternative matrix formulation B is recommended
when problems are encountered with general formulation A before attempting
matrix-"tting routines [21].
The trend with these systems was that the condition number tended to increase with the

number of subsystems. This suits the original intention to use FEM and ESEAwith systems
comprising only a small number of subsystems, e.g., L- or T-junctions.
To date [15], negative CLF values have only occurred for transmission across the

straight section of T-junctions. For the T-junction in this paper, up to eight of the 30
ensemble members gave negative CLF values in some third octave bands. Therefore, there is
a relatively high success rate in determining positive CLF values. This highlights
a signi"cant bene"t of the ESEA ensemble approach over that of a single deterministic
analysis from which the latter might lead to the conclusion that SEA is not appropriate.
When the majority of the ESEA ensemble members have positive CLF values, this provides
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su$cient motivation to attempt an SEA model. However, matrix-"tting procedures [21]
could of course be used to avoid any negative CLF values in the ensemble.

3.3. STATISTICAL DISTRIBUTIONS OF THE COUPLING LOSS FACTOR

The aim in this section is to investigate the probability distribution of the CLF ensemble
that was determined from FEM and ESEA.
In numerical experiments on coupled rectangular plates by Fahy andMohammed [5], an

ensemble was created using subsystem dimension ratios randomly chosen from a normal
distribution. It was noted that when the modal overlap was less than unity, the use of
normally distributed input parameters for the ensemble gave rise to distinctly non-normal
distributions of the ensemble outputs. Fahy and Mohammed concluded that it is
&&2impossible to estimate con"dence limits from a knowledge, or estimate of the standard
deviation alone, at low values ofM. This fact alone is su$cient to limit severely the practical
utility of SEA under conditions of low modal overlap''. The outputs analyzed in their
numerical studies were coupling loss factors and power #ow normalized on the input power,
which had right or left skewed distributions. For low modal overlap (M(1), the
distributions for coupling loss factors between coupled beams and between coupled plates
were both right skewed. The existence of right skewed distributions with systems of low
modal overlap is perhaps of less concern than suggested by these authors, because it is
standard practise in acoustics to deal with response data in decibels. It will be shown in this
paper that for coupled plates with low modal density and low modal overlap, it is possible
to estimate con"dence limits and that it is sometimes appropriate to determine the ESEA
ensemble average using a logarithmic average.
Manohar and Keane [25] carried out numerical experiments on coupled

one-dimensional subsystems and concluded that either lognormal or gamma distributions
adequately described the probability density function for the dissipated power. However,
they noted that further work was needed to justify the choice of these distributions. Wester
and Mace [26, 27] carried out numerical experiments to investigate ensemble averages for
two coupled rectangular plates. This gave rise to some probability density functions for the
logarithm of the normalized power #ow that were right skewed [27]. Considering these
data along with those of Hodges and Woodhouse [28], and Fahy and Mohammed [5] it is
likely that any resulting probability density function could be system speci"c, as well as
speci"c to the choice of coupling parameter, method of ensemble creation, excitation,
subsystem type and the choice of local or global mode analysis.
In this paper, the probability distribution of the CLF data is required before the mean,

standard deviation and con"dence intervals can be used in further SEA calculations. The
ensemble was created using a normal distribution to describe the variation in plate length
and therefore the "ndings are only applicable to this ensemble. From the observations of
Fahy and Mohammed [5] for plate systems with low modal overlap, there is no reason to
assume that the resulting CLF data will also have a normal distribution. The "rst step is to
assess the normality of the linear CLF using normal quantile plots. If these distributions are
found to be right-skewed, then a logarithmic transformation can be applied to determine if
the linear CLF ensemble can be described as a lognormal distribution.
The normal quantile plots with both linear and logarithmic CLF values are shown in

Figures 4 and 5 for the L- and T-junctions respectively. From Fahy and Mohammed, it is
expected that non-normal distributions will occur whenM(1. However, no rigid rule has
yet been established as to whether this applies to the modal overlap factor for the source
plate, receiver plate or the geometric mean for the coupled plates. The latter may not be



Figure 4. L-junction. Normal quantile plots for linear and dB data, 50 Hz}1 kHz (14 curves). *�*
indicates M(1 for plates 1 and 2.
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su$cient in all cases [15]. One possible criterion would be thatM(1 for all plates coupled
along the same junction line, where M is the arithmetic mean of the ensemble's modal
overlap factors. However, in the "gures in this section, a slightly less strict requirement is
used for which the criterion isM(1 for subsystems i and j that are involved in �

��
. This is

indicated using *�* for each frequency band where M(1. This only di!ers from the
other criterion in that �

��
would otherwise have *�* for all third octave bands.

For both junctions, the "gures illustrate that whenM(1, the distributions of the linear
CLF are widest and there can be signi"cant right skew such that it is appropriate to attempt
a logarithmic transformation. The transformation gives rise to su$ciently straight lines
such that for engineering purposes the linear CLF can be described as a lognormal
distribution. When M*1, the linear CLF data can generally be considered as a normal
distribution, although there is still some evidence of right skew that could be due to the
#uctuations in the relatively small ensemble. Therefore, to calculate statistical parameters
from these data, the logarithmic transformation is used regardless of the value of the modal
overlap factor.
For the logarithmic CLF of the T-junction, a few of the lowest CLF values do not appear

to belong to the normal distribution (e.g., the two �
��
values of 71)9 and 74)0 dB, and also

the �
��
value of 44)6 dB). The only feature that these values share in common is that they

have signi"cantly higher or lower condition numbers than those at adjacent frequencies. If
the condition numbers had been consistently higher, then this would have provided
a reason to treat these values as outliers. However, this assumes that the condition number
can be considered as a robust measure.



Figure 5. T-junction. Normal quantile plots for linear and dB data, 50 Hz}1 kHz (14 curves). *�*
indicates M(1 for plates 1 and 2 with �

��
and �

��
, and plates 2 and 3 with �

��
.
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As a general conclusion, whenM(1 for all plates that share the same junction line, the
linear CLF is likely to have a lognormal distribution and when M�1, it can generally be
assumed to have a normal distribution. In all cases, but particularly where the modal
overlap falls between these two ranges, the normal quantile plots can be used to assess the
statistical distribution.
The implications of a lognormal distribution for the linear CLF are now considered with

reference to its intended use in predictive SEA using either the full matrix solution or path
analysis. The latter can be used to aid investigations into the relative importance of the
di!erent transmission paths. For any system with power injected into subsystem 1, the
energy ratio between subsystem 1 and subsystem N for transmission along the path
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1, 2, 3, 4,2,N is shown as

E
�
/E

�
"(�

�
�
�
�
�
,2, �

�
)/(�

��
�
��

�
��
,2, �

	���
�
). (5)

Path analysis poses no problem to the use of the mean, standard deviation and con"dence
limits of the CLF in logarithmic form. However, this is not the case with the matrix solution
for which linear values are required. Therefore, a reverse transformation is needed to
convert the mean and standard deviation back to linear values along with a method to
calculate con"dence limits in linear units.
The normal distribution N(�, �) has two parameters, � and � and is referred to as

a two-parameter distribution. The lognormal distribution [29] is generally
a three-parameter distribution �(	, �, �), where 	 is the lowest possible value (referred to as
the threshold) that can exist in the lognormal distribution. Assuming that the linear CLF
can potentially be zero [11] or in"nitesimally small, then 	"0 and its lognormal
distribution can be described by a two-parameter distribution �(�, �).
To discuss the reverse transformation of the mean and standard deviation, the lognormal

distribution of the linear CLF is now denoted as �(��, ��) and the normal distribution of
the logarithmic CLF as N(�, �). For engineering purposes, it is common to describe the
CLF in decibels using a formula such as 10 lg(�

��
/10���). However, to determine the mean

and standard deviation in linear values, it is more convenient here to use lg(�
��
) for the

normal distribution, N (�, �). Having determined � and �, the reverse transformation is
��"10� and ��"10�. From the transformation process, �� is the geometric mean of the
linear values and �� can be described as the geometric standard deviation. When the sample
mean is approximately equal to the population mean and the sample standard deviation is
approximately equal to the population standard deviation, the lower and upper con"dence
limits of the linear CLF are ��/(��)� and �� (��)�, respectively, where n"1 for the 68%
interval, n"2 for the 95% interval and n"3 for the 99)7% interval. For small samples,
Student-t procedures can be used to determine n.
The evidence in this section (albeit limited) con"rms that there is potential in the use of

the ESEA ensemble for plate subsystems with low modal density and low modal overlap.
The ability to determine statistical parameters that describe the normal distribution of the
logarithmic CLF facilitates its use with quick path analysis calculations using decibels.
More importantly, the ability to determine statistical parameters (mean, standard deviation
and con"dence intervals) that describe the lognormal distribution of the linear CLF
facilitates its inclusion in predictive SEA using the matrix solution. In the next section, the
expected range of D

����
is determined by using the CLF 95% con"dence limits in the SEA

permutation method.

3.4. SEA PERMUTATION METHOD: L- AND T-JUNCTIONS

In this section, the L- and T-junctions are used to assess the SEA permutation method.
For the T-junction, transmission between plate 1 and plate 2 (or 3) is referred to as
&&transmission around the corner'', whereas transmission between plates 2 and 3 is referred
to as &&transmission across the straight section''.
The ensemble of FEM D

����
data is compared with minimum and maximum D

����
data

that have been determined from the SEA permutation method using the 95% con"dence
limits of the FEM ESEA CLF. Although this may appear to be a circular veri"cation route
for the FEM ESEA approach, it allows an initial check on the matrix inversion and the
assumption of a lognormal distribution for the linear CLF as well as con"rming that the



Figure 6. L-junction. Vibration level di!erence, D
����
(source plate: i, receiver plate: j). FEM ensemble (30 dotted

lines). SEA predictions using wave theory (black circles). FEM ESEA CLF ensemble average (thick solid line).
Expected range from the SEA permutation method (two thin solid lines).
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SEA permutation method is appropriate. It also allows an opportunity to assess the
di!erences between the ensemble average, the ensemble members and the prediction from
SEA bending wave theory.
TheD

����
data are shown for the L-junction in Figure 6 and for the T-junction in Figure 7.

From the large range of the FEM ensemble data, it is apparent that a single deterministic
analysis would be of minimal use, even though the level of uncertainty in the description of
the plates is not atypical.
The "gures indicate that when M(1 and N(5, D

����
from SEA wave theory is still

a reasonable approximation for the FEM ensemble average D
����
. However, it is important

to note that this does not occur in general [5, 8, 30] and is due in part to the relatively high
damping. Of particular note is the observation that the range of the FEM ensemble can be
similar in magnitude to D

����
from SEA wave theory. This highlights the need to be able to

determine the expected range of D
����
. In general, the minimum and maximum D

����
data

from the SEA permutation method are seen to provide a satisfactory estimate of the
expected range.
For transmission around the corner of the L- and T-junctions, the minimum D

����
value

tends to be a slight underestimate whenM(1 and N(5 and can be considered to err on
the side of caution. However, for transmission across the straight section of the T-junction,
the underestimate for 50}160 Hz is more signi"cant, with the largest underestimate at
125 Hz (M(1 and N(5). The latter problem is due to the �

��
outlier of 44)6 dB identi"ed

in the normal quantile plot (Figure 5). However, for 50}160 Hz, the lognormal distribution
was a reasonable approximation.
It is concluded that, in combination, there are no major problems with matrix inversion

errors, the assumption of a lognormal distribution, and the SEA permutation method.
However, it appears that underestimation of the minimum D

����
value can sometimes be

signi"cant when M(1 and N(5.
The "nal stage can now be carried out in the next section by testing the SEA permutation

method with a larger plate system consisting of these isolated L- and T-junctions.

3.5. SEA PERMUTATION METHOD: SEVEN-PLATE SYSTEM

Amore demanding test of the SEA permutation method is now made through analysis of
the seven-plate system. This plate system was used to test the SEA permutation method



Figure 7. T-junction. Vibration level di!erence, D
����
(source plate: i, receiver plate: j). FEM ensemble (30 dotted

lines). SEA predictions using wave theory (black circles). FEM ESEA CLF ensemble average (thick solid line).
Expected range from the SEA permutation method (two thin solid lines).
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using the CLF 95% con"dence intervals. (The FEM model used the loss factor 1/�f for
each plate, as was used for each of the isolated L- and T-junctions that formed this
seven-plate system.)
The D

����
data are shown in Figure 8. The three main "ndings are: (1) the expected range

tends to account for the range of the individual ensemble members, (2) D
����
from SEA

bending wave theory is a reasonable approximation for the FEM ensemble average D
����
for

this system, and (3) the ensemble average D
����
calculated using the FEM ESEA CLF in an

SEA model generally describes the FEM ensemble average D
����
.

When the receiver subsystem is directly coupled to the source subsystem, the minimum
and maximum D

����
data can provide a satisfactory estimate of the expected range (see

D
����
, D

����
, D

����
and D

����
). However, there is still a general underestimation of the

minimum D
����
value with signi"cant underestimation in some cases (see D

����
, D

����
, D

����
and D

����
).
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When the receiver subsystem is not directly coupled to the source subsystem, the SEA
permutationmethod can give rise to signi"cant underestimates for the minimumD

����
values

(see D
����
), and signi"cant overestimates for the maximum D

����
values (see D

����
and D

����
).
Figure 8. Seven-plate system. Vibration level di!erence,D
����
(source plate: i, receiver plate: j). FEM ensemble (30

dotted lines). SEA predictions using wave theory (black circles). FEM ESEA CLF ensemble average (thick solid
line). Expected range from the SEA permutation method (two thin solid lines).



Figure 8. Continued.
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Recalling that smaller underestimates of the minimum D
����
values occurred with the

isolated L- and T-junctions, these underestimates are likely to be caused by an
accumulation of errors because the vibration transmission now takes place across more
than one junction.
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Some problems concerning the use of CLF data determined from isolated L- and
T-junctions in complete systems are to be expected because the complete system will have
di!erent global eigenfrequencies to the isolated junctions. The global eigenfrequencies are
important because the peaks in the coupling tend to occur at global eigenfrequencies
[15, 30]. However, use of the ESEA ensemble to randomly shift the global eigenfrequencies
of the isolated component systems has been shown here to provide a useful estimate of the
vibration transmission and the ensemble statistics. In general, the SEA permutation method
tends to err on the side of caution. In a favourable light, this could be seen as bene"cial
because a robust solution should certainly not underestimate the expected range. However,
signi"cant errors can occur when the receiver subsystem is not directly coupled to the source
subsystem.

4. CONCLUSIONS

The results demonstrate that use of the ESEA ensemble enables plate systems with low
modal density and low modal overlap to be included in the framework of SEA. It has also
been shown that to determine CLF data for use in predictive SEA, it is advantageous to use
the ESEA ensemble, rather than a single deterministic analysis. This is because relatively
small variations (e.g.,(10%) in the physical properties of plate systems with low modal
density and low modal overlap can cause large di!erences in the coupling parameters. For
this reason, a single deterministic analysis is considered to be of minimal use in many
practical situations where there is uncertainty is the material properties and dimensions.
Another signi"cant advantage of the ESEA ensemble is that when the matrix inversion fails
for a single deterministic analysis, it has been found that problems are unlikely to be
encountered with the majority of ESEA ensemble members. In contrast, when the matrix
inversion fails for a single deterministic analysis, this may incorrectly lead to the conclusion
that SEA is not appropriate at all. When the majority of the ESEA ensemble members have
positive CLF values, this provides su$cient motivation to attempt an SEA model.
However, matrix-"tting procedures [21] could still be used to avoid any negative CLF
values in the ensemble.
Problems with the ESEA matrix inversion were anticipated to be a potential barrier to

the successful application of FEM ESEA. However, it was found that there were no
signi"cant problems with negative ILF or CLF values for these plate systems despite the
relatively high condition numbers when the modal density and modal overlap was low. (For
more general applications of ESEA to plates with low modal density and low modal
overlap, it should be noted that the lack of problems from the matrix inversion in this paper
could be due to the relatively high damping used for the masonry/concrete plates.) It was
concluded that to obtain the lowest condition numbers, the general ESEA matrix
formulation should be used, although in some cases, lower condition numbers can be
achieved using Lalor's alternative matrix formulation. The speci"c ESEA matrix
formulations gave the highest condition numbers and should therefore be avoided.
Concerning the statistics of the FEM ESEA CLF, it was shown that for these particular

ensembles, the probability distribution function for the linear CLF could be considered as
lognormal. (This "nding is only expected to apply when a normal distribution is used to
create the ensemble.) This enabled calculation of the statistics of the linear CLF and use of
the SEA permutation method to determine the expected range of D

����
. The test

constructions were isolated L- and T-junctions and a plate system formed from these
isolated junctions. The SEA permutation method using the CLF 95% con"dence intervals
was most suited to situations where the receiver subsystem was directly coupled to the
source subsystem and an estimate was required that erred on the side of caution for the
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expected range. When the receiver subsystem is not directly coupled to the source
subsystem, the expected range can be signi"cantly overestimated.
It is concluded that there is potential in the SEA permutation method to determine the

expected range of response with plate systems that have low modal density and low modal
overlap. However, more numerical experiments are required to investigate the limitations of
this approach.
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